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Abstract

I study partisan gerrymandering when district composition affects candidates’ pol-

icy positions and, consequently, voters’ behavior. In the U.S., primary elections de-

termine which candidates compete in general elections, with a district’s ideological

composition shaping who emerges as the nominee. Thus, redistricting affects not only

which party wins but also the ideology of competing candidates. I find that classical

gerrymandering strategies can backfire when candidates emerge endogenously, partic-

ularly in districts where extreme voters may select non-viable candidates. However,

when properly designed to account for both voter affiliation and preference intensity,

gerrymandering can be a more powerful instrument than traditional approaches that

consider only party affiliation. I show how methods from optimal transport theory

can be used to characterize the optimal redistricting plan, which creates districts that

maximize ideological distance between competing candidates. Using these findings, I

analyze two implications for the U.S. House of Representatives: how gerrymandering

contributes to political polarization and its consequences for minority representation.
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1 Introduction

Partisan gerrymandering is the deliberate manipulation of electoral district boundaries

to create an unfair advantage for a particular political party. A notable example is the

2012 Republican Party’s Redistricting Majority Project (REDMAP). Despite Republican

candidates receiving 1.4 million fewer votes than their Democratic counterparts in U.S.

House elections, REDMAP’s strategic redistricting efforts resulted in a 33-seat majority for

the Republicans (Daley, 2020). Traditionally, gerrymanderers use data from presidential

elections to predict whether a certain geographic area is predominantly Republican or

Democratic. Perhaps as a consequence, voters’ behavior in each district is assumed to be

impervious to redistricting efforts themselves.

This paper studies optimal redistricting when candidates’ policy positions and, conse-

quently, voters’ behavior, respond to the districts in place. I embed a two-stage model of

elections at the district level into an optimal redistricting problem and show how tradi-

tional gerrymandering can backfire when extreme voters select non-viable primary candi-

dates. Using methods from optimal transport theory (Monge, 1781; Kantorovich, 1942), I

show how savvy redistricters can create more powerful plans than standard redistricting

allows for. Their strategy? Crafting district boundaries that drive a wedge between mod-

erates and extremists in the opposing party, effectively turning their rivals’ diversity into

a liability.

Illustrative examples. To illustrate the forces in my model, it is useful to recall the

standard redistricting setting. In the example in Figure 1, there’s a U.S. state with a finite

population of voters. Two-thirds are Democrats (in blue) and one-third are Republicans

(in red). A Republican gerrymanderer has to partition voters into, say, three equipopulous

districts, and wants to maximize the number of districts with a Republican majority. She

applies the standard “pack-and-crack” technique. That is, she creates two “cracked” dis-

tricts, District 1 and 2, consisting of just enough Republicans to have a majority, and one

“packed” district, made up of only Democrats. Thanks to gerrymandering, Republicans

win two-thirds of districts with just one-third of overall Republican supporters. This is a

classic result and one core point of the effects of gerrymandering.

The approach above, however, assumes that party positions are fixed and exogenous.

Instead, suppose that party positions in each district are endogenous. Consider Figure 2.
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Figure 1: Standard pack-and-crack redistricting.

In the population, a small fraction of Democrats and an even smaller fraction of Repub-

licans are moderates, represented by less intense shades of blue and red, respectively; all

other voters are partisans (or extremists). Suppose primary elections precede the state-

wide elections. In each district and for each party, primaries determine the candidate,

who can be either a moderate or an extremist, depending on which voter type constitutes

the majority within their party. In general elections, while partisans consistently vote for

their party’s candidate, moderate voters prefer a moderate candidate from either party

over an extreme candidate from their own party. The standard “pack-and-crack” gerry-

mandering strategy can backfire. For example, consider District 1 and District 2 in Figure

2. In both districts, there is a majority of partisans among Republicans and a majority

of moderates among Democrats. Hence, the Republican candidate caters to partisans,

while the Democratic candidate caters to moderates. The only moderate Republican voter

prefers voting for the moderate Democratic candidate rather than for a partisan Repub-

lican. Redistricting effectively converts the moderate Republican voter to a Democratic

voter! Ultimately, with endogenous candidates, classical gerrymandering fails to achieve

its goal: in this example, all districts end up selecting a Democratic candidate.

A real-life equivalent of such “dummymandering”, as a bad gerrymandering is usu-

ally referred to in policy circles, can be found in the case of Oregon’s fifth district: after

Democrats redrew boundaries in anticipation of the 2022 mid-term elections, progres-

sive Jamie McLeod-Skinner unexpectedly defeated seven-term centrist incumbent Kurt

Schrader in the Democratic primary. Crucially, McLeod-Skinner’s victory hinged on a

forty-point advantage in Deschutes County, which was only added to the district through

a recent redistricting effort. This shift in Democratic candidate allowed Republican Lori

Chavez-De Remer to appeal to moderate voters and flip the district for the first time since

1994 (Flaccus, 2022; Glueck, 2022; Scott and Weigel, 2022).

Do such examples and real-life instances mean that gerrymandering is less powerful
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Figure 2: Pack-and-crack backfires.

than previously thought? Quite the opposite. Consider a scenario where a Republican

redistricter is aware of and exploits the endogeneity of voter behavior. Figure 3 illustrates

an optimal gerrymandering plan. In District 1, despite having a Democratic majority,

the composition is heterogeneous. There are sufficient Democratic partisans so that the

Democratic candidate caters to their preferred policy, while the two moderate Democrats

align more closely with the Republican candidate, who caters to the single moderate Re-

publican voter in the district. Consequently, moderate Democrats prefer to vote Republi-

can, even though they would have preferred a moderate Democratic candidate to a mod-

erate Republican. As a result, Republicans win this district. District 3 consists of a major-

ity of partisan Republicans, ensuring a straightforward Republican win. By strategically

considering the endogeneity of candidates’ selection and voters’ behavior, the redistricter

manages to secure all districts for the Republican party, despite Republicans constituting

only one-third of the overall population. That is, gerrymandering can be even more pow-

erful than previously thought if its endogenous impact on voting behavior is taken into

account.

Figure 3: Gerrymandering is even more powerful than previously thought.

Model. There is a continuum of voters with single-peaked preferences over a unidimen-

sional policy space. Voters are identified by their bliss point, which I sometimes refer to

as their “type.” Republicans are voters with bliss points above an exogenous cutoff, while
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Democrats are voters with bliss points below the cutoff. A Republican designer partitions

voters into equipopulous districts to maximize the number of districts won by Republi-

cans.

The model incorporates a two-stage election process at the district level to determine

voting behavior. First, in the primary elections, Democratic and Republican voters sepa-

rately select their party candidates. Then, in the general election, all district voters choose

between the two primary winners. Drawing on the work of Owen and Grofman (2006),

I model electoral incentives so that primary candidates position themselves to appeal to

their respective party medians.1 To close the model, in districts lacking Republican or

Democratic voters, I assume the corresponding party’s candidate defaults to the most

moderate position within their ideological spectrum. The general election outcome is de-

cided by the district’s median voter. The candidate whose position most closely aligns

with the district median wins the election.

Given that redistricting in the U.S. takes place roughly every ten years, it is conceivable

that gerrymanderers cannot perfectly anticipate future populations’ preferences at the

time of redistricting. Therefore, I allow the designer to face uncertainty about voters’

preferences, parametrized by a one-dimensional aggregate shock. In other words, after

the designer commits to their redistricting plan, but before elections take place, a random

shock occurs that uniformly shifts all voters’ preferences by the same amount.

Results. In Section 2, I show that the problem can be simplified by restricting attention

to a specific subset of feasible plans. Proposition 1 establishes that each optimal district

must contain exactly two voter types: one type from below the population median and

one type from above it, in equal proportions.

The intuition for this result emerges from the examples above. First, Figure 2 demon-

strates how pack-and-crack backfires when District 1 mixes moderate and extreme Repub-

lican types. The designer can perfectly hedge against this possibility by creating cracked

districts with no more than one Republican type, ensuring the optimal plan performs at

least as well as standard pack-and-crack. Second, Figure 3 reveals a novel opportunity:

1In the Appendix, I provide microfoundations. The strict dependence on party medians is not necessary

for my results: the driving force behind the model is responsiveness of candidates to party preferences. In

Section 5, I provide an extension where candidates’ positions are determined by a general quantile of the

preference distribution within each party.
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In Districts 1 and 2, the ideological divide between moderate and extreme Democrats al-

lows Republicans to win despite being in the minority. This same mechanism extends

to districts packed exclusively with Democrats, where a moderate Republican candidate

can peel off enough moderate Democratic voters to secure victory. To maximize this ad-

vantage, each such district should contain exactly two voter types: a higher type serv-

ing as moderate Democrat and a lower type as extreme Democrat. This hybrid strat-

egy—packing Democrats while cracking them between moderates and extremists—allows

the optimal plan to strictly outperform traditional pack-and-crack.

The effectiveness of gerrymandering depends critically on voter type differences within

a district. The larger the wedge between the two voter types, the higher the probability

of winning the district, making districts with significant gaps “safer” than more homoge-

neous ones. While the designer would ideally maximize this gap for all districts, she is

constrained by the overall distribution of voter types. She therefore has to decide which

voter types to allocate to safer, more heterogeneous, districts, and which to less safe, more

homogeneous, districts.

As Theorem 1 summarizes, this task can be formalized as a Monge-Kantorovich op-

timal transport problem, where the designer determines how to optimally “transport”

voter types from above the population median to match with types below it. The solution

to this problem depends on the distribution of uncertainty about voter preferences.

In Section 3, I characterize such solution under the assumption that the aggregate

shock is S-shaped around zero.2 Proposition 3 demonstrates that there is a unique opti-

mal redistricting plan. Voters far from the population median are matched in a “positive

assortative” or “comonotonic” manner: high types above the median are paired with high

types below it. However, for voters close to the median, the matching reverses to “nega-

tive assortative” or “anti-comonotonic”: high types above the median are paired with low

types below it.

The intuition is as follows. The districts most likely to be won are those with large

ideological gaps between their two voter types, which requires matching voters from the

right tail of the distribution with voters from the left tail. When working with these ex-

treme voters, there’s no benefit in creating an excessively large gap in one district at the

2The cumulative distribution function (CDF) of the shock is convex below zero and concave above it.

Prominent cases of symmetric noise considered in the literature—e.g., normally-distributed noise—satisfy

this assumption.
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expense of another. Instead, the designer uses positive assortative matching to maintain

consistent, sufficient gaps across all such districts. However, closer to the median, ideo-

logical gaps become harder to create and districts become less likely to be won. Here, the

designer switches to negative assortative matching: creating some very safe districts with

large gaps at the expense of other districts that are given up as lost.

Under the additional assumption that the shock is symmetric, I am able to determine

further which voters are matched positively versus negatively assortatively across the dis-

tribution. Proposition 4 serves as the analogue of a first-order condition in my framework:

the designer must maximize the number of districts with positive assortative matching,

where extreme types above the median pair with moderate types below it.

Intuitively, because the designer’s objective is linear in the number of districts won,

the symmetry assumption on the shock effectively makes the problem independent of

the shock variance. Then, the designer’s optimal strategy is to create as many winning

districts as possible by maintaining just enough ideological gap to secure victory in each.

Positive assortative matching, pairing extreme types above the median with moderate

types below it, achieves exactly this: it creates consistent, sufficient gaps without making

any district excessively safe.

This characterization yields clear comparative statics. When Republicans are suffi-

ciently numerous, the designer can afford to match voters positively assortatively through-

out the entire distribution. As the Democratic share of the population grows, the designer

must increasingly resort to negative assortative matching, pairing extreme voters from

both sides of the median together.

Implications. In Section 4, I explore implications of my gerrymandering model that are

pertinent to current political and legal debates.

First, I examine how optimal gerrymandering strategies can exacerbate polarization in

the U.S. House of Representatives. Proposition 5 predicts a notable ideological gap among

elected representatives, who are either moderate Republicans or extreme Democrats. No-

tably, extreme Democrats emerge in districts with a significant share of moderate voters,

challenging the conventional view that political extremism stems from segregating ex-

treme voters into homogeneous districts.

Second, I discuss the implications for minority representation in congressional dis-

tricts. In “minority opportunity” districts, where minorities make up 40-50% of vot-
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ers, minority candidates’ success depends critically on white voter support. My model

suggests this dependence can trigger “white backlash,” where white voters unite against

minority-preferred candidates, benefiting Republican candidates as predicted by my frame-

work.

1.1 Related Literature

Optimal partisan gerrymandering. This paper primarily relates to the economic theory

literature on optimal partisan gerrymandering, starting with Owen and Grofman (1988).

While their work focuses on a binary voter type model, subsequent research has empha-

sized the importance of considering voters’ preference intensities in redistricting strate-

gies. In existing models, preference intensities play a role mostly due to uncertainty about

voter preferences, typically assuming moderate voters are more susceptible to preference

swings. Friedman and Holden (2008) show that with significant aggregate preference un-

certainty, the optimal redistricting plan assigns extreme supporting voters to the same

districts as extreme opposing voters, effectively neutralizing the latter’s influence. The

authors term this approach “matching slices,” which is reminiscent of what I term nega-

tive assortative matching. Kolotilin and Wolitzky (2024) develop a more comprehensive

model of gerrymandering that allows for both aggregate preference uncertainty and sub-

stantial shocks that affect voters independently, namely idiosyncratic uncertainty.3 Their

findings suggest that when idiosyncratic uncertainty dominates, the optimal redistricting

involves segregating the most extreme opposing voters while matching the remaining vot-

ers in a negative assortative manner. Importantly, their empirical analysis indicates that

scenarios where idiosyncratic uncertainty outweighs aggregate uncertainty are most rel-

evant in practice. Gul and Pesendorfer (2010) examine competition between two parties,

each controlling redistricting in distinct areas. In their optimal plan, opposing voters are

segregated and more favorable voters are all pooled together.

I contribute to this literature by allowing individual voters’ behavior to depend on the

districts in place. One implication of this approach is that it results in a different treat-

ment of extreme opposing voters. While previous literature either predicts such extreme

voters to be segregated or matched with extreme supporters, my model exploits them to

3In their companion paper, Kolotilin et al. (2023), they show how their problem can be connected to

optimal transport.
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turn moderate voters against their own party. To do so, the optimal plan prescribes “mis-

matched slices,” on either side of the preference distribution, resulting in novel political

and legal implications, as I discuss in Section 4.

Information design. As Kolotilin and Wolitzky (2024) show, the gerrymandering prob-

lem can be mapped onto an information design problem. The distribution of voter pref-

erences serves as the “prior,” districts function as “posteriors,” and a redistricting plan

represents a distribution of districts that satisfies a constraint, which is mathematically

equivalent to Bayes plausibility. Indeed, in the special case of exogenous policies, my

model becomes a variant of Bayesian persuasion (Kamenica and Gentzkow, 2011) for me-

dians, which can be solved with recent off-the-shelf tools (Yang and Zentefis, 2024), as I

show in Section 2. My solution sheds light on information design problems where payoffs

depend on more intricate aspects of posterior distributions, such as the relative positions

of conditional medians, rather than single summary statistics like means or medians.

Optimal transport. To characterize the solution, I leverage a Monge-Kantorovich op-

timal transport representation of the redistricter’s problem (Monge, 1781; Kantorovich,

1942). Drawing on results from Chiappori et al. (2010) and Santambrogio (2015), I estab-

lish the existence and uniqueness of the solution and characterize it for key benchmark

cases. I use related techniques to characterize the solution to an optimal transport prob-

lem where the surplus function is symmetric and S-shaped.

Other topics in gerrymandering. The broader literature on gerrymandering tackles a

variety of different issues. The effects of redistricting on policy choice is considered by

Shotts (2002) and Besley and Preston (2007), while the impact of gerrymandering on po-

larization in the House of Representatives is addressed, for instance, by McCarty et al.

(2009). Other important topics in redistricting that I do not explore in this paper relate

to: including geographic constraints on gerrymandering (Puppe and Tasnádi, 2009), ac-

counting for differential voter turnout (Bouton et al., 2023), and measures of electoral

maldistricting (Gomberg et al., 2023).
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2 The model

2.1 Setup and Statement of the Problem

Voters and Parties. Consider a continuum of voters with single-peaked preferences over

uni-dimensional policy space [v,v], a closed interval on the real line R. A voter’s ideal

point, sometimes referred to as her type, is denoted by v P [v,v], with population distri-

bution φ P ∆p[v,v]q4, assumed to have a strictly increasing and continuously differentiable

cumulative distribution function (CDF), F, on the interior of [v,v]. I normalize the me-

dian of F to be vm “ 0. Moreover, I assume voters’ preferences to be symmetric around

their ideal points5.

There are two parties, the Democratic and the Republican party. Party affiliation is

determined by a threshold k P [v,v]. In particular, I call Republicans the voters such that

v ě k and Democrats the voters such that v ă k.

Gerrymandering. A Republican designer, or redistricter, is in charge of creating equipop-

ulous districts so as to maximize his party’s seat share. She allocates voters among a con-

tinuum of districts based on their type v, thus determining the distribution π P ∆p[v,v]q,

with CDF π, of voter types within a district. A redistricting plan H P ∆p∆p[v,v]qq6 is,

therefore, a distribution over distributions: it specifies the measure of districts with each

distribution π of voter types. To satisfy the equipopulous requirement typical of ger-

rymandering, any redistricting plan must be such that the following budget constraint

holds7:
ż

πdHpπq “ φ. (BC)

For instance, uniform redistricting imposes all districts to be the same, thus Hpφq “ 1,

while perfect segregation imposes that each voter type v P [v,v] constitutes a district on

their own.

4For any complete and separable metric space X, I let ∆pXq denote the set of Borel probability measures

on X, endowed with the weak* topology.
5For instance, a voter type v’s preference for policy x P [v,v] could be represented by utility function

Upx;y, tq “ ´|x´ v|.
6Note that ∆p[v,v]]q is metrizable as a complete and separable metric space with the weak* topology.
7The integral sign is used to denote the Lebesgue integral as defined in Aliprantis and Border (1994).
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Vote Shares. In any district with distribution π P supppHq8, two candidates emerge,

a Democratic candidate (D) and a Republican candidate (R). Given the symmetry as-

sumption on voters’ preferences, each voter chooses the candidate whose policy position

is closer to their ideal point. The designer wins a district if and only if she receives a

majority of the district vote.

Suppose there is an exogenous rule that determines the positions of candidates and

how they respond to preferences in the district’s population. In particular, suppose that

D and R locate at the lowest median of πp¨|v ă kq9(the median of Democratic affiliates)

and at the highest median of πp¨|v ě kq (the median of Republican affiliates)10, respec-

tively. There are various reasons why primary candidates might cater to their respective

party medians rather than converge to the overall district median (e.g. voter myopia). In

the Appendix, I show that this can be justified via a model of primary elections, where

both voters and candidates are uncertain about the position of the population median

(Owen and Grofman, 2006). However, it is important to note that the strict dependence

on party medians is not necessary for my results to go through. For instance, the results

are robust to any alternative rule that determines the position of candidate D (respectively,

R) through a linear combination of the median of Democratic (respectively, Republican)

affiliates and the population median.

To close the model, I assume that whenever supppπq Ď [k,8q (respectively, supppπq Ď

p´8, k]), D (respectively, R) takes position k. This assumption is equivalent to stating that

even in a district with a very high Democratic (respectively, Republican) majority, there is

always an arbitrarily small fraction of moderate Republicans (respectively, Democrats).

Formally, call cπ,D and cπ,R the position taken by D and R in district π. Then:

pcπ,D , cπ,Rq “

$

’

’

’

’

’

&

’

’

’

’

’

%

pvmπ,D , kq if supppπq Ď p´8, k]

pk,vmπ,Rq if supppπq Ď [k,8q

pvmπ,D ,v
m
π,Rq otherwise

,

8Throughout, suppp¨q denotes the support of a probability measure, defined as the set of all points whose

every open neighborhood has positive measure.
9Throughout, MpY |Xq denotes the conditional probability distribution of Y given X according to mea-

sure M.
10Without loss of generality, the tie breaking rule is chosen so as to insure the existence of an optimum.
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where:

vmπ,D “ inf
a

"

a : πp[a,v]|v ă kq ě
1
2

*

X

"

a : πp[v,a]|v ă kq ě
1
2

*

vmπ,R “ sup
a

"

a : πp[a,v]|v ě kq ě
1
2

*

X

"

a : πp[v,a]|v ě kq ě
1
2

*

.

Voters choose their district representative by majority rule. Hence, the candidate who

wins the elections is the one closer to the district’s median. Formally, the position of the

district representative, cπ, is:

cπ “

$

’

&

’

%

cπ,D if vmπ ă
cπ,R`cπ,D

2

cπ,R if vmπ ě
cπ,R`cπ,D

2

where:

vmπ “ sup
a

"

a : πp[a,v]q ě
1
2

*

X

"

a : πp[v,a]q ě
1
2

*

.

The designer wins district π if the winning candidate is the Republican candidate; that is,

if cπ ě k. Given redistricting plan H, the designer’s vote share is:

ż

1pcπ ě kqdHpπq “

ż

1

ˆ

vmπ ´
cπ,R ` cπ,D

2
ě 0

˙

dHpπq.

Aggregate Uncertainty. Suppose that, after the designer commits to a plan, but before

candidates choose their positions, an aggregate location shock affects all voters11. For-

mally, each voter experiences a common shock ω P R, so that her ideal point becomes

v ´ ω. Assume that ω has distribution γ P ∆pRq, with CDF G, assumed to be Lipschitz

continuous12 and strictly increasing on [2v ´ 2v,2v ´ 2v]. Any shock ω induces a new

preference distribution in each district. For any π, I call πω “ πpv ` ωq such induced

distribution.

11A shock to preferences is particularly relevant in my setup, given that redistricting opportunities usu-

ally present themselves only every ten years. In any case, my solution encompasses the case in which the

shock is arbitrarily small, so as to approximate the solution in the absence of a shock.
12For instance, if G is everywhere continuously differentiable, it satisfies the assumptions. I merely re-

quire Lipschitz continuity to allow for G to have a set of non-differentiability points of at most Lebesgue

measure zero.
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Redistricter’s Problem. The redistricter wishes to maximize the expected seat share

won by Republicans. Her problem is:

max
HP∆p∆p[v,v]qq

ż ż

1

ˆ

vmπω ´
cπω,D ` cπω,R

2
ě 0

˙

dHpπqdγpωq

s.t.
ż

πdHpπq “ φ.

(RP)

A redistricting planH is feasible if it satisfies constraint (BC). It is optimal if it is a solution

to (RP).

It is instructive to compare (RP) to a redistricting problem with exogenous policies,

whose solution can be found with off-the-shelf tools from recent literature. Suppose that

candidates’ positions are fixed: cπω,R “ v, cπω,D “ v. The redistricter’s problem under

exogenous policies is:

max
HP∆p∆p[v,v]qq

ż ż

1pvmπω ě k‹
qdHpπqdγpωq

s.t.
ż

P dHpπq “ F.

(RPEx)

where k‹ “
v`v

2 . The object of interest to the designer is an element of ∆p∆p[v,v]qq, a

distribution over distributions. However, in the case of exogenous policies, the objective

function only depends on district medians. Hence, the problem can be mapped to a maxi-

mization problem over elements of ∆p[v,v]q, which are much simpler objects to work with.

The set of feasible distributions of medians can be characterized using Theorem 2 in Yang

and Zentefis (2024). The transformed problem is:

max
χP∆p[v,v]q

ż ż

1pv ´ω ě k‹
qdχpvqdγpωq

s.t. maxt2Fpvq ´ 1,0u ď Xpvq ď mint2Fpvq,1u, for all v P [v,v],

where X is the CDF associated with χ P ∆p[v,v]q. Switching the order of integration, it can

be rewritten as:

max
χP∆p[v,v]q

ż

Gpv ´ k‹
qdχpvq

s.t. maxt2Fpvq ´ 1,0u ď Xpvq ď mint2Fpvq,1u, for all v P [v,v].
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Since the problem is linear in χ, it suffices to focus attention on the extreme points of the

set of feasible distributions of medians. Again, Yang and Zentefis (2024) characterize such

a set in Theorem 1. In my case, since G is increasing, the solution is χ‹ “ maxt2F ´ 1,0u,

which dominates all other feasible distributions of medians, in the first-order-stochastic-

dominance sense. We can now recover all solutions to (RPEx) as all those redistricting

plans that induce χ‹. It is easy to see that there are many such plans. The following

proposition, already proven with a different argument by Kolotilin and Wolitzky (2024),

describes such plans and summarizes the result for exogenous policies.

Proposition 0. A feasible redistricting plan H P ∆p∆p[v,v]qq is a solution to the redistricting

problem with exogenous policies (RPEx) if and only if, for all π P suppH, except for at most a

zero-measure subset, there exists vπ ě 0 such that πptvπuq “ πptv : v ď 0uq “ 1
2 .

In the case of endogenous policies, it is not possible to reduce the object of interest to

a distribution over a uni-dimensional space, because the objective function depends both

on district medians and on candidates’ positions. Nevertheless, in the next subsection, I

show that the problem can still be simplified and solved using a different set of tools. In

particular, I show that the object of interest can be reduced to a joint distribution over two

uni-dimensional spaces, thus invoking the literature on the so-called optimal transport.

2.2 The Designer’s Problem as an Optimal Transport Problem

While (RP) is a challenging problem, it can be simplified and restated as an optimal trans-

port problem. The following result provides necessary conditions for optimality and con-

stitutes the main ingredient for such a transformation.

Proposition 1. A feasible redistricting plan H P ∆p∆p[v,v]]qq is optimal only if, for all π P

supppHq, except for at most a zero-measure subset, there exist v1 ě 0 and v2 ď 0 such that

πptv1uq “ πptv2uq “ 1
2 .

Proposition 1 constrains the set of feasible plans by requiring any candidate for opti-

mality to allow for a continuum of districts, each with at most binary support. Moreover,

each district in an optimal plan must place half the mass on a voter type above the median

of F and the rest on a voter type below the median of F. Effectively, this proposition states
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Figure 4: district π (in purple) is split at its median, and types above vmπ (the black circles)

are matched to types below vmπ (the white circles) in a positive assortative manner.

that (RP) is a matching problem of voter types across the median of their population dis-

tribution. The proof of Proposition 1 proceeds in two steps, for which I now provide an

intution.

First, any optimal plan can be emulated with a pairwise plan, a plan in which each

district has at most a binary support. The intuition is that any district π can be “split” at

the median and fragmented into multiple (possibly a continuum of) districts, each of them

containing at most two voter types, from above and below the median of π, respectively.

The trick consists in matching the highest types above the median of π to the highest types

below the median of π, and so on, in a positive assortative manner. Figure 4 illustrates this

construction. As it turns out, for each such new district π̂, it holds that 1pcπ̂ω ě kq ě

1pcπω ě kq, no matter the realization of the shock ω.

Second, pairwise plans are in fact strictly beneficial. While, for some values of ω P

supppγq, the designer may be indifferent between π and π̂, such indifference is broken

for a positive-measure subset Ω Ď supppγq. This intuition becomes clear by looking at

Figure 4. As long as supppπωq is contained in [v,k], district π is lost. Nevertheless, there

is a ω - threshold below which a positive measure of the are always closer to k than they

are to their # matches. Then, such districts are won even if their support is contained in

[v,k]. Finally, districts must not only be pairwise, but they must also match voter types

across the median of F. Figure 5 illustrates this point. Suppose there are two districts,

π and π, as in Figure 5a. District π matches two voter types v4 ą v3 that are both above

zero, while π matches two voter types v2 ą v1 that are both below zero. Consider the

alternative matching shown in Figure 5b. Pairing v1 with v3 and v2 with v4 is without loss

for all values of the location shock, and it is strictly advantageous for a positive-measure

14



(a) Districts π and π.

(b) Alternative matching.

Figure 5: Districts must match voter types across the median of F.

Figure 6: Of the three depicted districts, only the one containing voter types v3 and v4 is

lost when ω “ 0.

subset of such values.

Proposition 1 justifies the definition of a relation between the set of redistricting plans

and the set of joint distributions over [v,0] ˆ [0,v]. The remaining of this subsection is

dedicated to formalizing such relation.

Define by ∆2 Ď ∆p∆p[v,v]qq the set of feasible plans H such that, for all π P supppHq,

other than at most a zero-measure subset, there exists v1 ě 0 and v2 ď 0 with πptv1uq “

πptv2uq “ 1
2 . Note that districts in ∆2 placing positive mass on v1 ě 0 and v2 ď 0 can

be won in one of two ways. For instance, after the realization of the location shock ω,

it can be that v1 ´ ω is above k, so that the district has at least a majority of Republican

affiliates. For such a district, I have vmπω “ cπω,R “ v1 and cπω,D “ v2. Alternatively, it can

be that v1 ´ ω is less than k, but still closer to k than it is to v2 ´ ω, so that the district

is split fifty-fifty between “extreme” and “moderate” Democrats, the latter choosing the

default moderate Republican candidate. For such a district, I have vmπω “ v1, cωπ,R “ k, and

cωπ,D “ v2, with k´v1 ď v1 ´v2. In Figure 6, three types of districts are shown. When ω “ 0,

only the district containing voter types v3 and v4 is lost.
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Now, define φ1 “ φp¨|v ě 0q and φ2 “ φp¨|v ă 0q. In words, φ1 is the distribution

of voter types conditional on them being above the population median, while φ2 is the

distribution of voter types conditional on them being below the population median. I call

T pφ1,φ2q Ď ∆p[v,0] ˆ [0,v]q the set of joint distributions having marginals φ1 and φ2.13

Following the literature on optimal transport, I sometimes refer to T pφ1,φ2q as the set of

transport plans from φ1 to φ2.

As it turns out, there is a one-to-one map between ∆2 and T pφ1,φ2q, so that I can

rewrite (RP) as:

max
τPT pφ1,φ2q

ż ż

1pv1
´ω ě kq `1pv1

´ω ă kq1

ˆ

v1
´ω´

v2 ´ω
2

ě k

˙

dτpv1,v2
qdγpωq.

By switching the order of integration and further manipulating the above, I get the opti-

mal transport problem:

max
τPT pφ1,φ2q

ż

G
`

2v1
´ v2

´ k
˘

dτpv1,v2
q. (OTP)

A transport plan τ in T pφ1,φ2q is pure whenever tv1,v2u P supppτq implies tv1, ṽ2u,tṽ1,v2u R

supppτq for v1 ‰ ṽ1 and v2 ‰ ṽ2. Intuitively, purity requires that no “splitting of masses”

occurs across voter types. A pure transport plan is sometimes referred to as a transport

map.

Define T ‹ Ď T pφ1,φ2q as the set of solutions to (OTP) and ∆‹
2 Ď ∆2 as the set of solutions

to (RP). The optimal transport problem (OTP) is equivalent to the redistricter’s problem

(RP) if there exists a bijection from T ‹ to ∆‹
2 mapping each solution to (OTP) to a solution

to (RP). The following theorem summarizes the discussion in this subsection.

Theorem 1. The optimal transport problem (OTP) is equivalent to the redistricter’s problem

(RP).

Theorem 1 simplifies the original problem significantly, allowing me to concentrate

on a more straightforward problem. In the following section, I will focus on finding a

solution to this simplified problem.

13Formally, T pφ1,φ2q “

!

τ P ∆p[v,0] ˆ [0,v]q : proj[v,0] #τ “ φ2, proj[0,v] #τ “ φ1
)

, where: proj[v,0] and

proj[0,v] denote the projection functions of [v,0] ˆ [0,v] on [v,0] and [0,v], respectively; pproj[v,0] #τqpAq “

τpproj´1
[v,0]pAqq and pproj[0,v] #τqpAq “ τpproj´1

[0,v]pAqq for all A measurable.
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(a) The district containing voter types v1, v4 is considerably safer

than the one containing types v2, v3.

(b) The two districts are of similar safety.

Figure 7: Two alternative configurations of districts.

3 Characterizing the Optimal Redistricting Plan

In this section, I characterize the solution(s) to (OTP) under different assumptions on the

shock distribution G. As it turns out, the optimal redistricting plan depends heavily on

the shape of G and, in most cases, on the shape of F.

3.1 Benchmark Cases

I start by describing a few benchmark cases before focusing on the most realistic case

of a symmetric, S-shaped shock. Suppose that G is strictly convex on its support. The

location shock “shifts” the distribution of preferences. A negative shock shifts it to the

right, increasing the fraction of Repiblican voters (hence it is a favorable shock), while a

positive shock shifts the distribution to the left (so it is unfavorable). When G is convex,

the marginal benefit of slightly improving a competitive district’s safety is outweighed by

the cost of marginally reducing the safety of an already secure district. Consider Figure 7.

Panel 7a depicts two districts, the one containing voter types v1, v4 considerably safer than

the one containing types v2, v3. One can think of constructing two alternative districts of

intermediate safety, as in panel 7b, by matching v1 to v3 and v2 to v4. Because G is convex,

the designer always prefers the matching in 7a to the one in 7b. In other words, the de-

signer wants to create very safe districts consisting of extremists of both parties, alongside

very unsafe districts consisting of more moderate voters. Based on this intuition, it can be
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(a) When G is convex, the optimal transport plan maps types

above 0 to types below 0 in a negative assortative manner.

(b) When G is concave, the optimal transport plan maps types

above 0 to types below 0 in a positive assortative manner.

Figure 8: The unique optimal plan under G convex/concave.

shown that there exists a unique, pure solution to OTP and that such solution maps types

above zero to types below zero in a negative assortative manner14. Figure 8a illustrates such

map.

Concave Shock. The case of a strictly concave G is analogous to that of a strictly convex

G. In this case, the marginal benefit of slightly improving a competitive district’s safety

exceeds the cost of marginally reducing the safety of an already secure district. Hence,

the designer prefers configuration in Figure 7b to the one in Figure 7a and tries to create

districts of similar safety. It can be shown that there exists a unique, pure solution to OTP

that maps types above 0 to types below 0 in a positive assortative manner15, as illustrated

in Figure 8b.

Uniform Shock. For the sake of completeness, I analyze the case when G is affine on its

support. It is easy to see that, given the linearity of G, problem OTP does not depend on

T , therefore T ‹ “ T pφ1,φ2q. In other words, any redistricting plan in ∆2 is optimal.

The following result formalizes the findings for benchmark cases.

14Formally, a negative assortative map τ P T pφ1,φ2q is such that, for all pv1,v2q,pṽ1, ṽ2q P supppτq, v1 ą ṽ1

implies v2 ď ṽ2.
15Formally, a positive assortative map τ P T pφ1,φ2q is such that, for all pv1,v2q,pṽ1, ṽ2q P supppτq,v1 ą ṽ1

implies v2 ě ṽ2.
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Proposition 2. Consider the following cases:

• If G is strictly convex on its support, there exists a unique, pure solution τ P T pφ1,φ2q to

OTP and it is a negative assortative map.

• If G is strictly concave on its support, there exists a unique, pure solution τ P T pφ1,φ2q to

OTP and it is a positive assortative map.

• If G is affine on its support, any τ P T pφ1,φ2q is a solution to (OTP).

In the next subsections, I will make use of the above benchmark results as building

blocks to characterize the solutions to (OT P ) when the shock is strictly convex below zero

and strictly concave above zero, or S-shaped.

3.2 S-shaped Shock

Suppose that G is strictly S-shaped around zero16. As it turns out, (OTP) admits a unique

solution. Moreover, one can capitalize on the benchmark cases studied in the previous

subsection to show that such solution is the convex combination of a positive assortative

map and a negative assortative map, each over an appropriate subset of [0,v] ˆ [v,0].

Further specifics of G determine which exact subsets host negative or positive assort-

ments, along with additional characteristics of the solution, like purity. Figure 9a depicts

[0,v] ˆ [v,0] and partitions it into two subsets. For any pv1,v2q belonging to the purple

region, 2v1 ´ v2 ´ k is less than zero, while for any pv1,v2q belonging to the green region,

2v1´v2´k is greater than zero. Hence, G is convex on the purple subset of [0,v]ˆ[v,0] and

concave on the green one. Remembering the discussion for benchmark cases, it should not

be surprising that any two couples of voter types falling in the green subset of [0,v]ˆ[v,0]

must constitute a positive assortment, in order to be part of a solution to (OTP). Similarly,

any two couples of voter types falling in the purple subset of [0,v] ˆ [v,0] must constitute

a negative assortment. The following result formalizes such intuition.

Proposition 3. Suppose G is S-shaped around 0. There exist τ`, τ´ P ∆p[0,v] ˆ [v,0]q and

α P [0,1] such that:

16Formally, G is strictly convex on [v,0] and strictly concave on [0,v].
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(a) The purple subset of [v,0] ˆ [0,v] hosts negative

assortments, while the green subset hosts positive

assortments.

(b) Example of τ “ ατ´ ` p1 ´ αqτ` under φ uni-

form.

Figure 9: The unique solution to (OTP) is the convex combination of a negative assortative

map and a positive assortative map.

1. τ´ is a negative assortative map with supppτ´q Ď tpv1,v2q P [0,v]ˆ[v,0] : 2v1 ´v2 ´k ě

0u

2. τ` is a positive assortative map with supppτ`q Ď tpv1,v2q P [0,v]ˆ [v,0] : 2v1 ´v2 ´k ď

0u

3. p1 ´αqτ´ `ατ` is the unique solution to OTP.

As an example, Figure 9b depicts the support of a pure candidate for optimality, when

φ is uniform. In this case, the linearity of F results in a linear mapping of voter types

above zero and below zero, with negative slope for matches in the purple region and

positive slope for matches in the green region.

While Figure 9b depicts the support of a pure transport plan, the actual solution to

(OTP) may very well not be pure, meaning that some voter types might belong to a posi-

tive assortative map and a negative assortative map, simultaneously. As I show next, this

is indeed the most likely case under a symmetric S-shaped shock, whenever the optimum

requires α ă 1.
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(a) The solution is fully positive assortative. (b) Tangency condition.

Figure 10: Under a symmetric shock, the solution is either fully positive assortative, or

the positive assortative map touches 2v1 ´ v2 ´ k “ 0.

3.2.1 Symmetric S-shaped Shock

I now consider an S-shaped shock that is symmetric around zero. Any normal shock

with mean zero falls under this category. For instance, a normal shock with sufficiently

small variance is of particular interest because it approximates the solution to (RP) in the

absence of an aggregate shock. Proposition 3 justifies the definition of set T `
´ as the set of

all plans τ P T pφ1,φ2q for which there exist τ`, τ´ P ∆p[0,v] ˆ [v,0]q and α P [0,1] such

that:

1. τ´ is a negative assortative map with supppτ´q Ď tpv1,v2q P [0,v] ˆ [v,0] : 2v1 ´ v2 ´

k ě 0u

2. τ` is a positive assortative map with supppτ`q Ď tpv1,v2q P [0,v]ˆ[v,0] : 2v1´v2´k ď

0u

3. τ “ p1 ´αqτ´ `ατ` .

The symmetry assumption allows me to derive a first-order condition that further char-

acterizes the solution within T
`
´. The following result states that, at the optimum, either

τ is fully positive assortative, or the support of its positive assortative part, τ`, is tangent

to the line 2v1 ´ v2 ´ k “ 0.

21



(a) Two positive assortative matched (in green) and two negative

ones (in purple).

(b) Three positive assortative matched (in green) and one nega-

tive (in purple).

Figure 11: Under a symmetric shock, the configuration in the bottom panel is preferred

to the one in the top panel.

Proposition 4. Suppose G is symmetric and S-shaped around 0. If τ “ ατ` ` p1 ´ατ´q P T
`
´

is the solution to (OTP), there exist v1, v2 P supppτ`q such that:

p1 ´αqp2v1
´ v2

´ kq “ 0.

Figure 10 illustrates Proposition 4, while Figure 11 demonstrates the intuition behind

its proof. In Figure 11a, we see a configuration consistent with Proposition 3. Here, voter

types v1, v2, v7, and v8 are matched positively assortatively, while v3, v4, v5, and v6 are

matched negatively assortatively. Now, consider breaking the match between v3 and v6

and including them in the positive assortative match, as shown in Figure 11b. If this

new configuration belongs to T
`
´, it proves superior to the original arrangement. The key

insight is that Figure 11b introduces an additional match where 2v1´v2´k ą 0, compared

to Figure 11a. While this addition reduces the surplus from existing positive matches, the

overall benefit outweighs the cost. This occurs because the symmetry of the shock causes

G to be steeper around zero than at any point above zero.

Figure 12 shows the simulated solution when both F and G are normal, for different

values of k. Note that as k increases, and the fraction of Republicans decreases, more and

more voters are matched in a negative assortative manner.
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(a) k “ 60 (b) k “ 75 (c) k “ 100

Figure 12: Solution for simulated F normal, G normal, for k “ 60, 75, 100

4 Implications

Gerrymandering has drawn intense scrutiny for decades, not only for its blatant manip-

ulation of electoral boundaries but also for its far-reaching impacts on democratic rep-

resentation and political polarization. In this section, I discuss two implications of my

model that speak to the current political and legal debate.

4.1 Gerrymandering and Congress Polarization

The relationship between gerrymandering and partisan polarization in the U.S. House of

Representatives is often oversimplified in public discourse. While frequently cited as a

primary driver of heightened partisanship and legislative gridlock, the actual dynamics

are far more nuanced and multifaceted. Empirical research on gerrymandering’s impact

remains divided, with scholars like McCarty et al. (2009) questioning its significance,

while others identify measurable effects (Kenny et al., 2023).

Existing theoretical models, predominantly based on exogenous candidate regimes,

have yielded conflicting predictions depending on assumptions about district compo-

sition. Models forecasting homogeneous districts, which effectively segregate extreme

opponents (Gul and Pesendorfer, 2010; Kolotilin and Wolitzky, 2024), predict a distinct

“gap” in the ideological distribution of elected representatives. This gap manifests as

a polarized landscape, with moderate supporters of the redistricting party at one end

and extreme opponents at the other. In contrast, models predicting district heterogeneity

(Friedman and Holden, 2008) anticipate a more continuous spectrum of political repre-

sentation, without such a pronounced ideological chasm.
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By incorporating endogenous candidate emergence, my model predicts the formation

of a significant gap in the distribution of district representatives without relying on the

creation of homogeneous districts. Let Qω
H denote the distribution of district representa-

tives given a redistricting plan H and a shock realization ω. Formally:

Proposition 5. For any optimal plan H and shock realization ω ă k, Qω
Hpp´ω,kqq “ 0.

Consistent with existing literature, optimal plans create numerous right-leaning dis-

tricts that elect moderate Republican candidates. However, they differ from previous

models in their treatment of opposition voters. Instead of isolating Democratic voters in

homogeneous districts, these plans strategically distribute them across heterogeneous dis-

tricts, each containing a carefully calibrated mix of moderate and extreme Democratic vot-

ers. This nuance yields two critical implications. First, in these heterogeneous “packed”

districts, extreme Democratic candidates consistently prevail as the consolidated bloc of

extreme Democratic voters outweighs moderate Democrats. Second, these districts effec-

tively disenfranchise moderate Democratic voters, who find themselves without represen-

tatives reflecting their political stances.

The analysis in this paper bridges competing theories. It predicts both discontinu-

ities in the distribution of representatives, characteristics of voter-segregating models, and

within-district polarization, typically associated with models yielding continuous repre-

sentative distributions. While existing literature has primarily examined voter segrega-

tion as a driver of polarization, this work explores an alternative mechanism: strategic

distribution of heterogeneous opposition voters. This approach offers a new perspective

on the relationship between redistricting strategies and political polarization, which is

worth exploring in future research.

4.2 Legislative implications for “majority-minority” districts

American federal legislation, including the 1965 Voting Rights Act, mandates that elec-

toral district lines cannot be drawn in such a manner as to improperly dilute minorities’

voting power. Since the 1986 Supreme Court decision in Thornburg v. Gingles, such

laws have been interpreted as actively requiring the creation of districts where racial and

ethnic minorities have the concrete opportunity to elect their own representatives. As a

consequence, in the 118th Congress there are 26 congressional districts where Black peo-
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ple constitute a strict majority, and 37 are majority Hispanic or Latino (Klein, 2023). Such

districts are called “majority-minority.”

While such legislation aims to increase minority representation in Congress, it has

sparked debate over its broader political implications. Some argue these districts inadver-

tently segregate Democratic voters, potentially mirroring aspects of an optimal Republi-

can redistricting strategy. The impact of such legislation on partisan outcomes remains

complex and unresolved.

As for the case of Congress polarization, the economic theory literature is divided.

One school of thought predicts that segregating extreme opponents is optimal, suggest-

ing majority-minority districts benefit Republicans by forcing Democratic gerrymander-

ers to deviate from their optimal strategy. The opposing view argues for more heteroge-

neous districts, implying that majority-minority districts disrupt Republicans’ desired

optimum. In my model, imposing a clear homogeneous majority could prevent both

Democrats and Republicans from exploiting the endogeneity of electoral incentives.

In some districts, racial or ethnic minorities may constitute a plurality rather than

a majority. These areas, known as “minority opportunity” or “non-majority minority”

districts, provide these groups the chance to elect their preferred representatives through

coalitions with White voters or other minority groups.

Some political analysts argue that Black candidates can win in constituencies where

Black voters comprise less than 40 ´ 50% of the population. They contend that creat-

ing Black-majority districts is unnecessary and may inadvertently limit potential Black

political gains (Canon, 2022).

Recent trends, particularly in the South, show people of color winning more seats

in majority-white districts (Lublin et al., 2020). However, the success of this strategy

largely depends on White Democrats’ willingness to support candidates of color. If they

are reluctant to do so, a phenomenon known as “White backlash” may occur, potentially

benefiting Republican candidates as described in this paper.

5 Extension: Quantile Redistricting

In the previous sections, I relied on party candidates whose positioning rule is a function

of party medians. The implication is that the designer can win a district even if there
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are no supporters inhabiting it. I now consider a scenario where candidates’ positions

are determined by a quantile, not necessarily the median, of the distribution of prefer-

ences within each party. Let 1
2 ă q ă 1 be the quantile parameter. Under this setting, the

Democratic candidate locates at the q-quantile of the preference distribution conditional

on being affiliated with the Democratic party, while the Republican candidate locates at

the p1 ´ qq-quantile of the preference distribution conditional on being affiliated with the

Republican party. In this setting, as it will become clear soon, the designer always needs

a non-zero measure of supporters in order to win a district. Therefore, it becomes much

harder to characterize the solution in general17. Thus, for illustrative purposes, I assume

F to be uniform on [v,v].

Call cqπ,D and c
q
π,R the positions taken by D and R in district π. Then:

pc
q
π,D , c

q
π,Rq “

$

’

’

’

’

’

&

’

’

’

’

’

%

pv
q
π,D , kq if supppπq Ď p´8, k]

pk,v
q
π,Rq if supppπq Ď [k,8q

pv
q
π,D ,v

q
π,Rq otherwise

where:

v
q
π,D “ inf

a
ta : πp[a,v]|v ă kq ě qu X ta : πp[v,a]|v ă kq ě qu

v
q
π,R “ sup

a
ta : πp[a,v]|v ě kq ě 1 ´ qu X ta : πp[v,a]|v ě kq ě 1 ´ qu .

Every other detail of the model is the same as in Section 2. The following proposition

characterizes the optimal measure of districts won by the designer for each realization of

the shock ω, denoted by V ωpqq.

Proposition 6. There are two cases:

1. Suppose Fpk `ωq ď 1
2q . Then V ωpqq “ 1.

2. Suppose Fpk `ωq ą 1
2q . Then V ωpqq “

2q
2q´1p1 ´Fpk `ωqq.

In the first case, where the fraction of Democratic voters is less than or equal to 1
2q ,

all districts are won by the Republican party. In the second case, where the fraction of

Democratic voters is greater than 1
2q , the designer wins 2q

2q´1p1 ´Fpk `ωqq district, which

17For starters, the connection to optimal transport requires considering joint distributions with three

fixed marginals, rather than just two. Hence, the optimal transport problem itself becomes less tractable.
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Figure 13: Three-wise positive assortative matching with probability masses of 1
2 , 1

2q , and
2q

2q´1 .

is strictly more than 2p1 ´ Fpk ` ωqq, the districts she would win under exogenous poli-

cies. The intuition for the optimal plan is similar to the one in the previous sections.

In each district, the redistricter needs to create a wedge between moderate and extreme

Democrats, encouraging the emergence of an extreme Democratic candidate and count-

ing on moderate Democrats to vote for a moderate Republican candidate. The following

result characterizes optimal redistricting plans:

Proposition 7. Define vq “ F´1
´

1
2q

¯

. A feasible redistricting planH is optimal if and only if,

for all π P supp pHq, there exists v1
π ě vq such that:

1. πptv1
πuq “ 1 ´πptv : v ă vquq “

2q
2q´1 , and

2. |v
q
π,D ´ vmπ | ě |vmπ ´ v1

π|.

This proposition states that an optimal redistricting plan under quantile redistricting

must satisfy two conditions for each district π in the support of the plan. First, the mass of

voters with type exactly equal to v1
π should be 2q

2q´1 , and the mass of voters with type be-

low vq should be 1 ´
2q

2q´1 . Second, the distance between v
q
P ,D , which is the lowest median

of the district, and the highest median of the district should be greater than or equal to the

distance between the highest median and v1
π. As it turns out, a type of redistricting plan

called “three-wise positive assortative” plan complies with the requirements of Proposi-

tion 7. Figure 13 illustrates such a plan. Each district contains exactly three voter types,

one type below 0, one type between 0 and vq, and another type above vq, with probability

masses of 1
2 , 1

2q , and 2q
2q´1 , respectively. Given shock ω, the designer wins district π if and

only if v1
π ´ ω ě k. Note that the intuition for the distribution of district representatives

works exactly as in Proposition 5. Even under quantile redistricting, the winning candi-

date is either a Republican with position above k, or a Democrat with position below ´ω,
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so that the distribution of district representatives has a gap in p´ω,kq.

6 Conclusion

This paper examines how partisan gerrymandering affects electoral outcomes when can-

didates’ policy positions respond endogenously to district composition. The analysis re-

veals that optimal gerrymandering strategies differ fundamentally from traditional “pack-

and-crack” approaches. While previous literature either predicts extreme opposition vot-

ers to be segregated or matched with extreme supporters, my model shows that optimal

gerrymandering creates “mismatched slices”—pairing extreme opposition voters with

moderate opposition voters. This strategy exploits primary election dynamics to drive op-

position candidates toward extreme positions, ultimately allowing the redistricting party

to win districts by appealing to moderate voters. These findings suggest that when can-

didate positions respond to district composition, gerrymandering becomes an even more

potent tool than previously understood. By leveraging these electoral dynamics, redis-

tricters can secure victories in more districts than would be possible under traditional

approaches that assume fixed voter preferences. This enhanced effectiveness stems from

the ability to turn voter diversity into an electoral weakness through strategic district

design—a mechanism distinct from the uncertainty-based explanations in existing work.

These gerrymandering strategies have important implications for political representa-

tion and polarization. The optimal redistricting plan leads to a notable ideological gap

in Congress, with districts electing either moderate Republicans or extreme Democrats.

Notably, this polarization emerges even in heterogeneous districts, challenging the con-

ventional wisdom that political extremism primarily results from voter segregation. The

findings also have implications for minority representation, particularly in “minority op-

portunity” districts where success depends critically on coalition-building with white vot-

ers. Several important directions for future research emerge from this analysis. First,

incorporating idiosyncratic uncertainty about voter preferences could reveal how local

shocks affect optimal redistricting strategies and potentially limit gerrymandering’s effec-

tiveness. Second, exploring different objective functions for the redistricting party—such

as maximizing policy influence rather than just seat share—could yield new insights into

the relationship between gerrymandering and legislative outcomes. Finally, future work
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should focus on developing mechanisms to make redistricting both fair and representa-

tive. Such research could help inform practical electoral reforms that preserve democratic

representation while limiting partisan manipulation.

29



Bibliography

Aliprantis, C. D. and K. c. Border (1994): Infinite dimensional analysis, Springer.

Besley, T. and I. Preston (2007): “Electoral bias and policy choice: theory and evidence,”

The Quarterly Journal of Economics, 122, 1473–1510.

Bouton, L., G. Genicot, M. Castanheira, and A. L. Stashko (2023): “Pack-Crack-Pack:

Gerrymandering with Differential Turnout,” Tech. rep., National Bureau of Economic

Research.

Canon, D. T. (2022): “Race and redistricting,” Annual Review of Political Science, 25, 509–

528.

Chiappori, P.-A., R. J. McCann, and L. P. Nesheim (2010): “Hedonic price equilibria, sta-

ble matching, and optimal transport: equivalence, topology, and uniqueness,” Economic

Theory, 42, 317–354.

Daley, D. (2020): “Inside the Republican Plot for Permanent Minority Rule,” The New

Republic, accessed: September 21, 2024.

Flaccus, G. (2022): “GOP’s Chavez-DeRemer flips Oregon 5th Congressional District,”

Associated Press, accessed: September 21, 2024.

Friedman, J. N. and R. T. Holden (2008): “Optimal gerrymandering: sometimes pack,

but never crack,” American Economic Review, 98, 113–44.

Glueck, K. (2022): “A left-leaning challenger takes down a moderate Democratic con-

gressman in Oregon,” The New York Times, accessed: September 21, 2024.

Gomberg, A., R. Pancs, and T. Sharma (2023): “Electoral maldistricting,” International

Economic Review, 64, 1223–1264.

Gul, F. and W. Pesendorfer (2010): “Strategic redistricting,” American Economic Review,

100, 1616–41.

Kamenica, E. and M. Gentzkow (2011): “Bayesian persuasion,” American Economic Re-

view, 101, 2590–2615.

30



Kantorovich, L. V. (1942): “On the translocation of masses,” in Dokl. Akad. Nauk. USSR

(NS), vol. 37, 199–201.

Kenny, C. T., C. McCartan, T. Simko, S. Kuriwaki, and K. Imai (2023): “Widespread

partisan gerrymandering mostly cancels nationally, but reduces electoral competition,”

Proceedings of the National Academy of Sciences, 120, e2217322120.

Klein, M. (2023): “Diving into District Data: What the Latest Census Numbers Tell Us,”

The Cook Political Report, accessed: October 10, 2024.

Kolotilin, A., R. Corrao, and A. Wolitzky (2023): “Persuasion with non-linear prefer-

ences,” .

Kolotilin, A. and A. Wolitzky (2024): “The economics of partisan gerrymandering,” .

Lublin, D., L. Handley, T. L. Brunell, and B. Grofman (2020): “Minority success in non-

majority minority districts: Finding the “sweet spot”,” Journal of Race, Ethnicity, and

Politics, 5, 275–298.

McCarty, N., K. T. Poole, and H. Rosenthal (2009): “Does gerrymandering cause polar-

ization?” American Journal of Political Science, 53, 666–680.
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A A Model of Two-Stage District Elections

In this appendix, I develop a model of probabilistic voting at the district level, providing

a foundation for the dependence of district candidates’ positions on the conditional me-

dians of their respective vote base. While equilibrium policy divergence can be supported

under a variety of models, the dependence of such policies on conditional medians is typ-

ical of two-stage election mechanisms. I propose one such model in which, like in many

others, two forces work in opposing directions to determine equilibrium policies. One

such force, a centripetal force, drives positions towards the district median, fueled by the

concern voters have with the ability of their first-stage candidate to win general elections.

Another force, a centrifugal force, moves positions away from each other, driven by first-

stage voters’ uncertainty about the exact position of the district median. Similarly to what

was suggested, among others, by Owen and Grofman (2006), equilibrium policies tend to

be driven towards party medians.

Consider a continuum of voters in a district. Each voter i has policy preferences given

by single-peaked utility up¨,viq, with vi P [v,v] being the voter’s unique ideal point. Fur-

ther, assume that the distribution π of vi admits a unique median, conditional median

given vi ě k, and conditional median given vi ă k, denoted by vmπ , vmπ,R, and vmπ,D .

Two-stage elections are held in the district. In the first, primaries stage, there are two

Republican and two Democratic candidates. Voters with vi ě k elect one of the Republican

candidates, while voters with vi ă k elect one of the Democratic candidates, by simple

majority, with ties broken uniformly at random. In the second stage, general elections, all

voters elect a district representative among the two first-stage winners, by simple majority,

with ties broken uniformly at random.

Before the first-stage elections, candidates simultaneously announce a policy position

and commit to it. They receive a payoff of 1 if they win the second-stage elections and 0

otherwise.

Suppose that voters and candidates do not know the position of the overall district

median vmπ , and believe it is distributed according to H P ∆p[v,v]q. In addition, candidates

know the position of the conditional medians vmπ,R and vmπ,D .

Given voters’ single-peaked preferences, the winner of the general elections is the can-

didate closer to the district median. In the first stage, voters best respond to the antici-

pated position of the opposing nominee by voting for the candidate maximizing their
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expected utility. More formally, given the position of the opposing nominee y, a voter

with ideal point t votes for the candidate whose position maximizes the following:

Upx;y, tq “ upx, tqppx,yq `upy, tqp1 ´ ppx,yqq,

where ppx,yq is the probability of x winning against y in general elections. As already

stated, equilibrium policies in such a model are driven by party medians, but their exact

value depends on the functional form of u and H . The literare analyses the model various

such specifics. I suggest a linear setting, where voter preferences are linear and uncertainty

is uniform. I prove the following.

Proposition 8. Suppose upx,viq “ ´|x ´ vi | and H is uniform on [v,v]. There exists a unique

Nash equilibrium where the Republican and Democratic candidates set positions cπ,R “ vmπ,R

and cπ,D “ vmπ,D , respectively.

The advantage of the linear setting is that voters’ expected utilities in the primaries

turn out to be single-peaked, with maximum reached at each voter’s ideal point. Then,

it can be argued that any candidate positioning at the party median will win first-stage

elections against any other candidate at a different position, irrespective of the oppos-

ing party’s behavior. Alternatively, Owen and Grofman (2006) consider a model where

upx,viq “ e´α|x´vi |, for some parameter α ą 0, and uncertainty is normal around the me-

dian, with standard deviation σ . In their model, voters’ expected utility during primary

elections is not necessarily single-peaked. Hence, they need to explicitly rule out a partic-

ular strategic behavior in which some first-stage voters anticipate that they will prefer the

opponents’ candidate at general elections and purposefully sabotage their own primaries

by voting for an extremist18. Under this credible assumption, they prove the following:

Proposition 9. (Owen and Grofman, 2006). If σ ě

max
"

1´e
1´αpvmπ ´vmπ,D q

,1´e
αpvmπ,R´vmπ q

*

α
?

2π
, there

exists a unique Nash equilibrium where the Republican and Democratic candidates set

positions cπ,R “ vmπ,R and cπ,D “ vmπ,D , respectively.

18Under uniform uncertainty, extreme events have a sufficiently high probability of happening, so that

voters are deterred from this kind of “political gamble”. Indeed, if they sabotage primaries by voting for an

extremist, they run the risk of such candidate winning general elections as well.
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B Proofs

B.1 Proofs of Section 2

Proof of Proposition 0. Since the designer wins district π P ∆p[v,v]q whenever vmπ ě

k‹ `ω, a redistricting planH P ∆p∆p[v,v]qq can be described by a distribution χ P ∆p[v,v]q

over v “ vmπ . Using Theorem 2 in Yang and Zentefis (2024), (RPEx) can be stated as:

max
χP∆p[v,v]q

ż ż

1pv ´ω ě k‹
qdχpvqdγpωq

s.t. maxt2Fpvq ´ 1,0u ď Xpvq ď mint2Fpvq,1u, for all v P [v,v].

Switching the order of integration, it can be rewritten as:

max
χP∆p[v,v]q

ż

Gpv ´ k‹
qdχpvq

s.t. maxt2Fpvq ´ 1,0u ď Xpvq ď mint2Fpvq,1u, for all v P [v,v].

By definition of first order stochastic dominance, and since G is strictly increasing, I have:
ż

Gpv ´ k‹
qdχpvq ă

ż

Gpv ´ k‹
qdmaxt2Fpvq ´ 1,0u

for any χ ą maxt2F ´ 1,0u. Hence, the optimal distribution of medians is χ‹ “ maxt2F ´

1,0u.

■

Proof of Proposition 1. Consider the following definition:

Definition 1. A redistricting plan H is pairwise if |suppπ| ď 2 for all π P supppHq.

The proof of this proposition relies on the following lemma, which states that for any

redistricting plan, there exists a pairwise plan that achieves the same value, for each real-

ization of the shock ω P supppγq.

Lemma 1. For any feasible plan H, there exists a feasible pairwise plan Ĥ such that, for all

ω P supppγq:
ż

1pcπ̂ω ě kqdĤpπ̂q ě

ż

1pcπω ě kqdHpπq
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Proof. Take any plan H P ∆p∆p[v,v]]qq such that
ş

πdHpπq “ φ. First, for any π P supppHq,

construct a measure P̂π P ∆p∆p[v,v]qq such that
ş

π̂dP̂πpπ̂q “ π, and, for all π̂ P supppP̂πq,

supppπ̂q “ tv1
π̂,v

2
π̂u, for some v1

π̂,v
2
π̂ P supppπq with:

v1
π̂ ě vmπ ,

v2
π̂ ď vmπ ,

π̂ptv1
π̂uq “ π̂ptv2

π̂uq.

Moreover, for any π̂, ρ̂ P supppP̂πq, let v1
π̂ ą v1

ρ̂ ùñ v2
π̂ ě v2

ρ̂.

Second, construct alternative plan Ĥ P ∆p∆p[v,v]qq such that, for any measurable set

A Ď ∆p[v,v]q, ĤpAq “
ş

P̂πpAqdHpπq. By construction, Ĥ is feasible and pairwise. I now

show that:

ż

1pcπ̂ω ě kqdĤpπ̂q ě

ż

1pcπω ě kqdHpπq.

Specifically, I show that, for any π P supppHq, π̂ P supppP̂πq, ω P supppγq, I have that

1pcπ̂ω ě kq ě 1pcπω ě kq.

Consider the following three cases:

1. If vmπω ě k, then cπ̂ω,R “ vmπ̂ω ě k, which means that 1pcπ̂ω ě kq “ 1 ě 1pcπω ě kq.

2. If vmπω ă k and supppπ̂ωq “ tvmπωu, it must be that, for all ρ̂ P supppP̂πq:

v2
ρ̂ ă v2

π̂ “ vmπ ùñ v1
ρ̂ ď v1

π̂ “ vmπ ,

which means that v2
ρ̂ ă vmπ ùñ v1

ρ̂ “ vmπ . Then, it must be that vmπω “ cπω,D and thus

1pcπ̂ω ě kq “ 1pcπω ě kq “ 0.

3. If vmπω ă k, |supppπ̂ωq| “ 2, and vmπ̂ω “ cπ̂ω,R ě k, then 1pcπ̂ω ě kq “ 1 ě 1pcπω ě kq.

4. If vmπω ă k, |supppπ̂ωq| “ 2, and vmπ̂ω ă k, it must be that cπ̂ω,D ď cπω,D , cπ̂ω,R “ k ď

cπω,R, and vmπ̂ω ě vmπω , so that 1pcπ̂ω ě kq ě 1pcπω ě kq.

Consider plan H P ∆p∆p[v,v]qq such that
ş

dπHpπq “ φ. The proof proceeds in two

steps.
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1. First, I show that if H is optimal it must be that, for all π P supppHq (except at most

for a zero-measure subset), either |supppπq| “ 1, or there exist v1 ‰ v2 such that

πptv1uq “ πptv2uq “ 1
2 .

Consider the pairwise feasible plan Ĥ constructed in Lemma 1. By construction,

Ĥ is such that for all π̂ P supppĤq, either |supppπ̂q| “ 1, or there exist v1 ‰ v2

such that π̂ptv1uq “ π̂ptv2uq “ 1
2 . Morevoer, Ĥ is such that

ş

1pcπ̂ω ě 0qdĤpπ̂q ě
ş

1pcπ̂ω ě 0qdHpπ̂q for all ω P supppγq.

Suppose that, for a positive-measure subset S Ď supppHq, either |supppπq| ą 2 or

supppπq “ tv1,v2u with v1 ‰ v2 and πptv1uq ‰ πptv2uq. I now show that there exists

measurable Ω Ď supppγq such that γpΩq ą 0 and:
ż

1pcπ̂ω ě kqdĤpπ̂q ą

ż

1pcπω ě kqdHpπq,

for all ω P Ω.

Take π P S and suppose supppπq Ď p´8,0]. Take the measure P̂π constructed in the

proof of Lemma 1. Excluding the cases |supppπq| “ 1 and |supppπq| “ tv1,v2u with

v1 ‰ v2, πptv1uq “ πptv2uq, it must be that P̂π
`

π̂ : vmπ̂ ´ cπ̂,D ą vmπ ´ cπ,D
˘

ą 0. For

any π̂ such that vmπ̂ ´ cπ̂,D ą vmπ ´ cπ,D , there exist ω ă ω such that 2vmπ̂ω ´ cπ̂ω,D ą

0 ą 2vmπω ´ cπω,D for all ω P pω,ωq. Indeed, 2vmπ̂ω ´ cπ̂ω,D “ 2vmπ̂ ´ cπ̂,D ´ω ą 0 for all

ω P pvmπ̂ ,2v
m
π̂ ´cπ̂,Dq and 2vmπω ´cπω,D “ 2vmπ ´cπ,D ´ω ă 0 for all ω P p2vπ´cπ,D ,`8q.

Since vmπ̂ ´ cπ̂,D ą vmπ ´ cπ,D , it suffices to take ω “ 2vmπ ´ cπ,D and ω “ 2vmπ̂ ´ cπ̂,D .

Now, suppose supppπq Ę p´8,0]. There exists ω‹ such that, for all ω ě ω‹, supppπωq Ď

p´8,0]. Then, the reasoning for supppπq Ď p´8,0] applies.

2. I showed that ifH is optimal it must be that, for all π P supppHq, either |supppπq| “

1, or there exist v1,v2 such that πptv1uq “ πptv2uq “ 1
2 . Now I show that it must be

that v1 ě vm and v2 ď vm for all π P supppHq (except for at most a zero-measure

subset). Suppose there exist S Ď supppHq such that HpSq ą 0 and for all π P S,

supppπq “ tv1
π,v

2
πu with v1

π ě v2
π ě vm. Since

ş

πdHpπq “ φ, there must exist S Ď

supppHq such that HpSq “ HpSq ą 0 and for all π P S, supppπq “ tv1
π,v

2
πu with

v2
π ď v1

π ď vm. Consider the measurable set Ŝ Ď ∆p[v,v]q and suppose that, for all

π̂1 P Ŝ, there exist π̂2 P Ŝ, π P S, and π P S such that π̂1pv1
πq “ π̂1pv1

πq “ 1
2 , π̂2pv2

πq “

π̂2pv2
πq “ 1

2 . Consider the alternative plan Ĥ, identical to H but such that ĤpŜq “

HpSq `HpSq and ĤpSq “ ĤpSq “ 0. Similarly to the first part of this proof, there
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exist Ω Ď supppγq such that GpΩq ą 0 and:
ż

1pcπω ě kqdĤpπq ą

ż

1pcπω ě kqdHpπq,

for all ω P Ω.

■

Proof of Theorem 1. The proof of this result rests on the following lemma.

Lemma 2. There exists a bijection t : T pφ1,φ2q Ñ ∆2.

Proof. Call ∆1 Ď ∆p[v,v]q the set of district distributions π P ∆p[v,v]q such that there exist

v1
π ě 0, v2

π ď 0 with πptv1
πuq “ πptv2

πuq “ 1
2 . Define the function s : ∆1 Ñ [v,0] ˆ [0,v] such

that, for each π P ∆1, spπq “ pv1
π,v

2
πq. Note that s is a bijection.

Define the function t : T pφ1,φ2q Ñ ∆p∆1q such that, for all τ P T pφ1,φ2q, for all mea-

surable B Ď ∆1, tpτqpBq “ τpspBqq. It is easy to see that t is well defined.

First, I show that tpT pφ1,φ2qq “ ∆2. Indeed, take any τ P T pφ1,φ2q. I need to show that

tpτq is feasible. That is, I show that, for all measurable A Ď [v,v]:
ż

∆1

πpAqdtpτqpπq “ φpAq.

Note that
ş

∆1
πpAqdtpτqpπq “ 1

2

ş

∆1
πpA|v ď 0qdtpτqpπq ` 1

2

ş

∆1
πpA|v ě 0qdtpτqpπq. Hence,

I show that
ş

∆1
πpA|v ě 0qdtpτqpπq “ φ1pAq. The reasoning for

ş

∆1
πpA|v ď 0qdtpτqpπq “

φ2pAq is analogous. By definition of t I have:
ż

∆1

πpA|v ď 0qdtpτqpπq “

ż

∆1

πpA|v ď 0qdτpspπqq.

With a change of variable I get:
ż

∆1

πpA|v ď 0qdτpspπqq “

ż

[0,v]ˆ[v,0]
1pv1

P Aqdτpv1,v2
q.

Finally:
ż

[0,v]ˆ[v,0]
1pv1

P Aqdτpv1,v2
q “

´

proj[0,v] #τ
¯

pAq “ φ1
pAq,

where the last equality follows from the definition of transport plan.

Second, I show that π ‰ π̂ implies tpπq ‰ tpπ̂q. Since π ‰ π̂, there exists measurable

B Ď [v,0] ˆ [0,v] such that πpBq ‰ π̂pBq. Then:

tpπqpBq “ πpspBqq ‰ π̂pspBqq “ tpπ̂qpBq

where the second inequality follows from the fact that s is a bijection.
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I now show that τ‹ P T ‹ if and only if H‹ “ tpτ‹q P ∆‹
2.

For any H P ∆2, I have:
ż ż

1pcπω ě kqdHpπqdγpωq

“
ż ż

1pv1
π ´ω ě kq `1pv1

π ´ω ă kq1

ˆ

v1
π ´ω´

v2
π ´ω` k

2
ě k

˙

dHpπqdγpωq.

By switching the order of integration and further manipulating, I get:
ż ż

1pv1
π ´ω ě kq `1pv1

π ´ω ă kq1

ˆ

v1
π ´ω´

v2
π ´ω` k

2
ě k

˙

dγpωqdHpπq

“
ż ż

1pv1
π ´ω ě kqdγpωq `

ż

1pv1
π ´ω ă kq1

ˆ

v1
π ´ω´

v2
π ´ω` k

2
ě k

˙

dγpωqdHpπq

“
ż

Gpv1
π ´ kq `G

`

2v1
π ´ v2

π ´ k
˘

´Gpv1
π ´ kqdHpπq

“
ż

G
`

2v1
π ´ v2

π ´ k
˘

dHpπq.

Using Proposition 1, H‹ P ∆2 is optimal if and only if:
ż

G
`

2v1
π ´ v2

π ´ k
˘

dHpπq ď

ż

G
`

2v1
π ´ v2

π ´ k
˘

dH‹
pP q for allH P ∆2.

With a change of variable:
ż

G
`

2v1
π ´ v2

π ´ k
˘

dtpτqpP q “

ż

G
`

2v1
π ´ v2

π ´ k
˘

dτpspP qq “

ż

G
`

2v1
π ´ v2

π ´ k
˘

dτpv1
π,v

2
πq

ď
ż

G
`

2v1
π ´ v2

π ´ k
˘

dtpτ‹
qpπq “

ż

G
`

2v1
π ´ v2

π ´ k
˘

dτ‹
pspπqq “

ż

G
`

2v1
π ´ v2

π ´ k
˘

dτ‹
pv1

π,v
2
πq,

for all τ P T pφ1,φ2q and for τ‹ “ t´1pH‹q. Hence,H‹ is optimal if and only if τ‹ is optimal.

■

B.2 Proofs of Section 3

In this subsection, I borrow results in Santambrogio (2015) and Chiappori et al. (2010)

as building blocks to characterize the solution to (OTP). In particular, Lemma 3, Lemma
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4, and Lemma 5 are adapted for my context from the above references. Given a function

f : X Ñ R locally Lipschitz, I define its superderdifferential at x0 P X, Bf px0q, to consist of

the set of real numbers β such that:

f pxq ď f px0q ` βpx´ x0q ` op|x´ x0|q as x Ñ x0,

with the error term being allowed to depend on the x0. Note that if the function is differ-

entiable at x0, I have that Bf px0q “ tf 1px0qu. I provide the following definitions.

Definition 2. G satisfies the twist condition whenever G is locally Lipschitz and BGpaq X

BGpbq “ H for all a ‰ b.

Definition 3. G satisfies the sub-twist condition whenever G is locally Lipschitz and, for all

a P supppγq:

|tb P supppγq : b ‰ a, BGpaq X BGpbq ‰ Hu| ď 1.

Definition 4. For any τ P T pφ1,φ2q, supppτq Ď [0,v] ˆ [v,0] is cyclically monotone (CM) if,

for every n P N, every permutation σ , and every finite family of points pv1
1,v

2
1q, . . . ,pv1

n,v
2
nq P

supppτq:
k

ÿ

i“1

Gp2v1
i ´ v2

i ´ kq ě

k
ÿ

i“1

Gp2v1
i ´ v2

σpiq ´ kq.

Then, the following lemmas hold.

Lemma 3. If G satisfies the twist condition, there exists a unique, pure solution to (OTP).

Proof. By Theorem 2 in Chiappori et al. (2010).

Lemma 4. If G satisfies the sub-twist condition, there exists a unique solution to (OTP).

Proof. By Theorem 3 in Chiappori et al. (2010).

Lemma 5. If τ P T pφ1,φ2q is a solution to (OTP), then supppτq is CM.

Proof. By assumption, G is continuous. Hence, the result holds by Theorem 1.38 in San-

tambrogio (2015).

I am now ready to prove the results in Section 3.
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Proof of Proposition 2. Suppose G is strictly convex. Then, for all x, either BGpxq “ H, or

inf BGpx1q ą sup BGpxq for all x1 ą x. Then, G satisfies the twist condition, and, by Lemma

3, there exists a unique, pure solution τ‹ to (OTP). Take any pv1,v2q,pṽ1, ṽ2q P supppτ‹q,

such that v1 ą ṽ1. By Lemma 5, it must be that:

Gp2v1
´ v2

´ kq `Gp2ṽ1
´ ṽ2

´ kq ě Gp2v1
´ ṽ2

´ kq `Gp2ṽ1
´ v2

´ kq.

Since G is strictly convex, the function Φpv1,v2q “ Gp2v1 ´ v2 ´ kq is strictly submodular.

Suppose that v2 ą ṽ2. By submodularity:

Gp2v1
´ v2

´ kq `Gp2ṽ1
´ ṽ2

´ kq ă Gp2v1
´ ṽ2

´ kq `Gp2ṽ1
´ v2

´ kq.

Hence, it must be v2 ď ṽ2.

Suppose G is strictly concave. Then, for all x, sup BGpxq ă inf BGpx1q for all x1 ą x.

Then, G satisfies the twist condition, and, by Lemma 3, there exists a unique, pure solution

τ‹ to (OTP). Take any pv1,v2q,pṽ1, ṽ2q P supppτ‹q, such that v1 ą ṽ1. By Lemma 5, it must be

that:

Gp2v1
´ v2

´ kq `Gp2ṽ1
´ ṽ2

´ kq ě Gp2v1
´ ṽ2

´ kq `Gp2ṽ1
´ v2

´ kq.

Since G is strictly concave, the function Φpv1,v2q “ Gp2v1´v2´kq is strictly supermodular.

Suppose that v2 ă ṽ2. By supermodularity:

Gp2v1
´ v2

´ kq `Gp2ṽ1
´ ṽ2

´ kq ă Gp2v1
´ ṽ2

´ kq `Gp2ṽ1
´ v2

´ kq.

Hence, it must be v2 ě ṽ2.

Now, suppose G is affine. Then, for any τ P T pφ1,φ2q:
ż

Gp2v1
´ v2

´ kqdτpv1,v2
q “ G

ˆ
ż

p2v1
´ v2

´ kqdτpv1,v2
q

˙

“

“ G

ˆ
ż

2v1dφ1
´

ż

v2dφ2
´ k

˙

,

by definition of T pφ1,φ2q. Since the objective function is constant over T pφ1,φ2q, I have

that T ‹ “ T pφ1,φ2q.

■

Proof of Proposition 3. First, since G is strictly convex below 0 and strictly concave

above 0, it satisfies the sub-twist condition, even if it does not necessarily satisfy the twist

condition. Hence, by Lemma 4, a solution τ to (OTP) exists and is unique.
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Take any pv1,v2q,pṽ1, ṽ2q P supppτq, such that 2v1 ´ v2 ´ k ă 0 and 2ṽ1 ´ ṽ2 ´ k ă 0.

Suppose that v1 ą ṽ1. By Lemma 5, it must be that:

Gp2v1
´ v2

´ kq `Gp2ṽ1
´ ṽ2

´ kq ě Gp2v1
´ ṽ2

´ kq `Gp2ṽ1
´ v2

´ kq.

Suppose that v2 ą ṽ2. Since G is strictly convex below 0, I have:

Gp2v1
´ v2

´ kq `Gp2ṽ1
´ ṽ2

´ kq ă Gp2v1
´ ṽ2

´ kq `Gp2ṽ1
´ v2

´ kq.

Hence, it must be v2 ď ṽ2.

Take any pv1,v2q,pṽ1, ṽ2q P supppτq, such that 2v1 ´ v2 ´ k ě 0 and 2ṽ1 ´ ṽ2 ´ k ě 0.

Suppose that v1 ą ṽ1. By Lemma 5, it must be that:

Gp2v1
´ v2

´ kq `Gp2ṽ1
´ ṽ2

´ kq ě Gp2v1
´ ṽ2

´ kq `Gp2ṽ1
´ v2

´ kq.

Suppose that v2 ă ṽ2. Since G is strictly concave above 0, I have:

Gp2v1
´ v2

´ kq `Gp2ṽ1
´ ṽ2

´ kq ă Gp2v1
´ ṽ2

´ kq `Gp2ṽ1
´ v2

´ kq.

Hence, it must be v2 ě ṽ2.

Suppose τ ptv1,v2 : 2v1 ´ v2 ´ k ě 0uq ą 0 and τ ptv1,v2 : 2v1 ´ v2 ´ k ă 0uq ą 0. Define

the measure τ` to be τ`p¨q “ τp¨|tv1,v2 : 2v1 ´ v2 ´ k ě 0uq, and the measure τ´ to be

τ´p¨q “ τp¨|tv1,v2 : 2v1 ´ v2 ´ k ă 0uq. Note that τ` is positive assortative, while τ´ is

negative assortative. Moreover:

τp¨q “ τ
`

tv1,v2 : 2v1
´ v2

´ k ě 0u
˘

τ`
p¨q ` τ

`

tv1,v2 : 2v1
´ v2

´ k ă 0u
˘

τ´
p¨q.

Suppose τ ptv1,v2 : 2v1 ´ v2 ´ k ě 0uq “ 0. Then define τ´p¨q “ τp¨q and note that it is

negative assortative.

Suppose τ ptv1,v2 : 2v1 ´ v2 ´ k ă 0uq “ 0. Then define τ`p¨q “ τp¨q and note that it is

positive assortative.

■

Proof of Proposition 4. Consider plan τ “ ατ``p1´αqτ´, in T
`
´. Define Γ` “ supppτ`q,

Γ´ “ supppτ´q, µ` “ proj[0,v] #τ`, µ´ “ proj[0,v] #τ´, ν` “ proj[v,0] #τ`, ν´ “ proj[v,0] #τ´.

Consider any set Γ̂ Ď Γ´ and small 0 ă ϵ ď 1. Construct the measure τ̂´ “ τ´p¨|Γ̂ q, with

marginals µ̂´ “ proj[0,v] #τ̂´ and ν̂´ “ proj[v,0] #τ̂´. Define:

τ̃´
“

τ´ ´ ϵτ´pΓ̂ qτ̂´

1 ´ ϵτ´pΓ̂ q
,
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with marginals µ̃´ “
µ´´ϵτ´pΓ̂ qµ̂´

1´ϵτ´pΓ̂ q
and ν̃´ “

ν´´ϵτ´pΓ̂ qν̂´

1´ϵτ´pΓ̂ q
. Then, construct τ̃` to be pos-

itive assortative with marginals µ̃` “
µ`` 1´α

α ϵτ´pΓ̂ qµ̂´

1` 1´α
α ϵτ´pΓ̂ q

and ν̃` “
ν`` 1´α

α ϵτ´pΓ̂ qν̂´

1` 1´α
α ϵτ´pΓ̂ q

. Finally,

consider the measure:

τ̃ “ α

ˆ

1 `
1 ´α
α

ϵτ´
pΓ̂ q

˙

τ̃`
` p1 ´αqp1 ´ ϵτ´

pΓ̂ qqτ̃´.

The proof relies on the following lemma.

Lemma 6. If τ̃ is in T
`
´, then:

ż

Gp2v1
´ v2

´ kqdτ̃ ą

ż

Gp2v1
´ v2

´ kqdτ.

Proof. By substitution:
ż

Gp2v1
´ v2

´ kqdτ̃ “

“ α

ˆ

1 `
1 ´α
α

ϵτ´
pΓ̂ q

˙
ż

Gp2v1
´ v2

´ kqdτ̃`
` p1 ´αqp1 ´ ϵτ´

pΓ̂ qq

ż

Gp2v1
´ v2

´ kqdτ̃´,

where:

`p1 ´αqp1 ´ ϵτ´
pΓ̂ qq

ż

Gp2v1
´ v2

´ kqdτ̃´
“

“ p1 ´αq

ż

Gp2v1
´ v2

´ kqdτ´
´ p1 ´αqϵτ´

pΓ̂ q

ż

Gp2v1
´ v2

´ kqdτ̂´.

Hence, the inequality in the statement of the present lemma holds if and only if:

α

ˆ

1 `
1 ´α
α

ϵτ´
pΓ̂ q

˙
ż

Gp2v1
´ v2

´ kqdτ̃`
´ p1 ´αqϵτ´

pΓ̂ q

ż

Gp2v1
´ v2

´ kqdτ̂´
ą

ą α
ż

Gp2v1
´ v2

´ kqdτ`.

Now, define τ̂` “ τ̃`p¨|supppµ̂´q ˆ [v,0]q , with marginals µ̂` “ proj[0,v] #τ̂` “ µ̂´

and ν̂` “ proj[v,0] #τ̂`. Morevoer, define τ`
“ τ̃`p¨|supppµ`q ˆ [v,0]q , with marginals

µ̄` “ proj[0,v] #τ`
“ µ` and ν`

“ proj[v,0] #τ`. Note that:

τ̃`
“

τ`
` 1´α

α ϵτ´pΓ̂ qτ̂`

1 ` 1´α
α ϵτ´pΓ̂ q

.

By substituting in the inequality:

p1 ´αqϵτ´
pΓ̂ q

ż

Gp2v1
´ v2

´ kqdτ̂`
´ p1 ´αqϵτ´

pΓ̂ q

ż

Gp2v1
´ v2

´ kqdτ̂´
ą

ą α
ż

Gp2v1
´ v2

´ kqdτ`
´α

ż

Gp2v1
´ v2

´ kqdτ`.

By assumption τ̃ is in T
`
´, so that

ş

Gp2v1 ´ v2 ´ kqdτ̂` ą 0.

To show the inequality holds, I proceed in three steps:
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1. Because G is S-shaped and symmetric around 0, it must be that:
ş

Gp2v1 ´ v2 ´ kqdτ̂` ´
ş

Gp2v1 ´ v2 ´ kqdτ̂´

ş

p2v1 ´ v2 ´ kqdτ̂` ´
ş

p2v1 ´ v2 ´ kqdτ̂´
ą

ą

ş

Gp2v1 ´ v2 ´ kqdτ` ´
ş

Gp2v1 ´ v2 ´ kqdτ`

ş

p2v1 ´ v2 ´ kqdτ` ´
ş

p2v1 ´ v2 ´ kqdτ`

2. I have that:

ż

p2v1
´ v2

´ kqdτ̂`
´

ż

p2v1
´ v2

´ kqdτ̂´
“

“ ´

ż

v2dν̂`
`

ż

v2dν̂´,

and:

ż

p2v1
´ v2

´ kqdτ`
´

ż

p2v1
´ v2

´ kqdτ`
“

“ ´

ż

v2dν`
`

ż

v2dν`.

Note that it must be that:

ν`
`

1 ´α
α

ϵτ´
pΓ̂ qν̂´

“ ν`
`

1 ´α
α

ϵτ´
pΓ̂ qν̂`,

so that:

ż

p2v1
´ v2

´ kqdτ`
´

ż

p2v1
´ v2

´ kqdτ`
“

“
1 ´α
α

ϵτ´
pΓ̂ q

ż

p2v1
´ v2

´ kqdπ̂`
´

ż

p2v1
´ v2

´ kqdτ̂´.

3. Putting together 1. and 2. delivers the desired inequality.

Suppose p1 ´ αq ‰ 0 and 2v1 ´ v2 ´ k ą 0 for all pv1,v2q P supppτ`q. It suffices to

show that there exist Γ̂ and ϵ so that τ̃ is in T
`
´. Consider v‹ “ supsupppΓ´qpv

1,´v2q. Call

Bδpv‹q Ď Γ´ a neighborhood of v‹ in Γ´ of radius δ.

Because φ admits a continuous density, and 2v1 ´ v2 ´ k ą 0 for all v1,v2 P supppτ`q,

there exist δ and ϵ, such that, for Γ̂ “ Bδpv‹q, 2v1 ´ v2 ´ k ě 0 for all v1,v2 P supppτ̂`q and

for all v1,v2 P supppτ`
q, so that τ̃ is in T

`
´.

■
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B.3 Proofs of Section 4

Proof of Proposition 5. By Proposition 1, any district π in an optimal plan H must be

such that πptv1uq “ πptv2uq “ 1
2 for v1 ě 0 and v2 ď 0. Fix shock realization ω. Consider

the following cases:

• v1 ´ω ě k. Then, cπ “ v1 ´ω ě k.

• v1 ´ω ă k and v1 ´ω´ v2´ω`k
2 ě k. Then cπ “ k.

• v1 ´ω ă k and v1 ´ω´ v2´ω`k
2 ă k. Then, cπ “ v2 ´ω ď ´ω.

Hence, Qω
Hpp´ω,kqq “ 0.

■

B.4 Proofs of Section 5

Proof of Proposition 6. First, note that a necessary, but not sufficient, condition for the

designer to win district π when the realized shock is ω, is that πωptv : v ě kuq ě
2q´1

2q .

Suppose not. Then πωptv : v ă kuq ą 1 ´
2q´1

2q “ 1
2q . The equilibrium position of the

Democratic candidate is v
q
πω,D , the leftmost q-quantile of πω conditional on v ă k. Then,

it must be that πωptv : v ď v
q
πω,Duq ą 1

2 , which means that the district is won by the

Democrats. Now, for any redistricting plan H and any realization of the schok ω, define

by χω P ∆p[0,1]q the distribution over xω “ πωptv : v ě kuq, that is the distribution of

Republican voters across districts. Then, an upper bound on the designer utility is:

ż

1

ˆ

xω ě
2q´ 1

2q

˙

dχω
pxωq ď

ż

2q
2q´ 1

xωdχω
pxωq “ min

"

1,
2q

2q´ 1
p1 ´Fpk `ωqq

*

,

where the equality holds by the law of iterated expectations. To finish the proof, it suffice

to show that the above upper bound can always be achieved. Because F is uniform, it

is easy to see that is achieved by the redistricting plan that matches any v1 P [vq,v] to a

v2 “ vq ´ v´v1

2q´1 P [0,vq] and to a v3 “ ´
q

2q´1pv ´ vq P [v,0], with respective weights 2q´1
2q ,

1
2q , and 1

2 .

■

Proof of Proposition 7. For any redistricting plan H, call Hpωq the measure of districts

won by the designer when the aggregate shock takes realization ω. By Proposition 6, at
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any realized shock ω, the designer can win at most measure min
!

1, 2q
2q´1p1 ´Fpk `ωqq

)

of districts, so Hpωq ď min
!

1, 2q
2q´1p1 ´Fpk `ωqq

)

at any ω. This implies that any feasible

H must satisfy Hpωq ď H‹pωq, where:

H‹
pωq “

$

’

&

’

%

1 if ω ď vq ´ k

2q
2q´1p1 ´Fpk `ωqq if ω ą vq ´ k

The designer expected utility for any feasible H is then:
ż

Hpωqdγpωq ď

ż

H‹
pωqdγpωq,

with strict inequality if Hpωq ‰ H‹pωq for any ω. If H‹ is attainable at every ω, H is

optimal if and only if it induces H‹. H‹ is always attainable, as shown by the proof of

Proposition 6. This means that H-almost all the districts π the designer wins if and only

if the shock is at most ω must satisfy πptv : v “ ωuq “ 1´πptv : v ă vquq “
2q´1

2q . However,

since to win a district the designer needs at least 1
2 of voters to vote for the Republican

candidate and 2q´1
q ď 1

2 , some voters with v ă vq must vote for R. Precisely 1
2 ´

2q´1
2q

additional voters must prefer v “ ω, the Republican candidate, to v
q
πω,D , the Democratic

candidate, with v
q
πω,D being the q - quantile of πω conditional on v ă k. But given that

P ptv : v ă kuq “ 1
2q , the Democratic candidate sits at a median of π. For him not to win the

district it must be that:

|v
q
πω,D ´ vmπω | ě |vmπω ´ω|.

■

B.5 Proofs of Appendix A

Proof of Proposition 8. Consider a Democratic voter with ideal point t (the reasoning

is similar for a Republican voter). Given position y of the Republican candidate, the

expected utility of electing a first-stage Democratic candidate with position x is:

Upx;y, tq “ upx, tqppx,yq `upy, tqp1 ´ ppx,yqq,

where ppx,yq is the probability of the Democratic candidate winning against the Repub-

lican candidate in the general elections. The proof of this result relies on the following

lemma.
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Lemma 7. Upx;y, tq is strictly increasing for x ă t, strictly decreasing for x ą t, and achieves

its maximum at x “ t.

Proof. First, suppose y ą t. Consider three cases:

Case x ą y. First, note that Upx;y, tq ď Upy;y, tq. Moreover, Upx;y, tq is decreasing:

Upx;y, tq “ ´px´ tq

˜

1 ´

x`y
2 ´ v

v ´ v

¸

´ py ´ tq

˜

x`y
2 ´ v

v ´ v

¸

,

and by taking the first order derivative:

U 1
px;y, tq “ ´

˜

1 ´

x`y
2 ´ v

v ´ v

¸

`
x´ t

2pv ´ vq
´

y ´ t

2pv ´ vq
“

“ ´1 `
x` y ´ 2v
2pv ´ vq

`
x´ y

2pv ´ vq
“ ´1 `

x´ 2v
2pv ´ vq

ă 0

Case t ă x ă y. Upx;y, tq is decreasing:

Upx;y, tq “ ´px´ tq

˜

x`y
2 ´ v

v ´ v

¸

´ py ´ tq

˜

1 ´

x`y
2 ´ v

v ´ v

¸

,

and by taking the first order derivative:

U 1
px;y, tq “ ´

˜

x`y
2 ´ v

v ´ v

¸

´
x´ t

2pv ´ vq
`

y ´ t

2pv ´ vq
“

“ ´
x` y ´ 2v
2pv ´ vq

`
y ´ x

2pv ´ vq
“

´2x` 2v
2pv ´ vq

ă 0

Case x ă t. Upx;y, tq is increasing:

Upx;y, tq “ ´pt ´ xq

˜

x`y
2 ´ v

v ´ v

¸

´ py ´ tq

˜

1 ´

x`y
2 ´ v

v ´ v

¸

,

and by taking the first order derivative:

U 1
px;y, tq “

˜

x`y
2 ´ v

v ´ v

¸

`
x´ t

2pv ´ vq
`

y ´ t

2pv ´ vq
“

“
x` y ´ 2v
2pv ´ vq

`
y ` x´ 2t
2pv ´ vq

“
2px` y ´ t ´ vq

2pv ´ vq
ą 0

Second, suppose y ă t. Consider three cases:
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Case x ă y. First, note that Upx;y, tq ă Upy;y, tq. Moreover, Upx;y, tq is increasing:

Upx;y, tq “ ´pt ´ xq

˜

x`y
2 ´ v

v ´ v

¸

´ pt ´ yq

˜

1 ´

x`y
2 ´ v

v ´ v

¸

,

and by taking the first order derivative:

U 1
px;y, tq “

˜

x`y
2 ´ v

v ´ v

¸

`
x´ t

2pv ´ vq
´

y ´ t

2pv ´ vq
“

“
x` y ´ 2v
2pv ´ vq

`
x´ y

2pv ´ vq
“

x´ 2v
2pv ´ vq

ą 0

Case y ă x ă t. Upx;y, tq is increasing:

Upx;y, tq “ ´pt ´ xq

˜

1 ´

x`y
2 ´ v

v ´ v

¸

´ pt ´ yq

˜

x`y
2 ´ v

v ´ v

¸

,

and by taking the first order derivative:

U 1
px;y, tq “

˜

1 ´

x`y
2 ´ v

v ´ v

¸

´
x´ t

2pv ´ vq
`

y ´ t

2pv ´ vq
“

“ 1 ´
x` y ´ 2v
2pv ´ vq

`
y ´ x

2pv ´ vq
“ 1 ´

´2x` 2v
2pv ´ vq

ą 0

Case x ą t. Upx;y, tq is decreasing:

Upx;y, tq “ ´px´ tq

˜

1 ´

x`y
2 ´ v

v ´ v

¸

´ pt ´ yq

˜

x`y
2 ´ v

v ´ v

¸

,

and by taking the first order derivative:

U 1
px;y, tq “ ´

˜

1 ´

x`y
2 ´ v

v ´ v

¸

`
x´ t

2pv ´ vq
`

y ´ t

2pv ´ vq
“

“ ´1 `
x` y ´ 2v
2pv ´ vq

`
y ` x´ 2t
2pv ´ vq

“ ´1 `
2px` y ´ t ´ vq

2pv ´ vq
ă 0.

Finally, note that Upx;y, tq is continuous, so it is reaches its maximum at x “ t, it is

strictly decreasing for x ą t, and strictly increasing for x ă t.
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Given Lemma 7, a Democratic candidate at vmπ,D will win first-stage elections against

any candidate at a different position (and similarly for Republicans). Indeed, Democratic

voters to the right of vmπ,D , accounting for half of all Democratic voters, prefer a candidate

at vmπ,D to any other candidate to the left of vmπ,D . Moreover, Democratic voters to the left

of vmπ,D , prefer a candidate at vmπ,D to any other candidate to the right of vmπ,D . Importantly,

this reasoning is independent of the Republican candidate’s position y. Since positioning

at vmπ,D (vmπ,R, respectively) gives a Democratic (Republican) first-stage candidate a posi-

tive probability of winning second-stage elections, there exists an equilibrium where both

Democratic candidates set at vmπ,D and both Republican candidates set at vmπ,R.

Now, I show there can not be any other equilibrium. First, any situation where first-

stage candidates do not tie can not be an equilibrium, because the losing candidate can

move to vmπ,D (vmπ,R) and have positive probability of winning second-statge elections. Sec-

ond, any situation where first-stage candidates do not set the same position can not be an

equilibrium. To see this, note that, in order to have different positions and tie at the same

time, one of the Democratic (Republican) first-stage candidate needs to choose a position

to the left (right) of vmπ,D (vmπ,R). However, any such position is outside of the support of

the median distribution, since candidates know the position of the conditional medians,

and is therefore dominated by vmπ,D (vmπ,R). Finally, suppose the two first-stage candidates

set at the same position, different from vmπ,D (vmπ,R). Then, there exists small ϵ ą 0 such that

one of the candidates has a profitable deviation by moving closer to vmπ,D (vmπ,R) by ϵ.

■
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